权重衰减

2025-09-07

权重衰减

我们可以使用正则化技术来解决一些过拟合问题,我们总是可以通过去收集更多的训练数据来缓解过拟合。 但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。 假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。在训练参数化机器学习模型时, 权重衰减(weight decay)是最广泛使用的正则化的技术之一, 它通常也被称为L2正则化。 这项技术通过函数与零的距离来衡量函数的复杂度, 因为在所有函数中,函数f = 0(所有输入都得到值) 在某种意义上是最简单的。 但是我们应该如何精确地测量一个函数和零之间的距离呢? 没有一个正确的答案。

一种简单的方法是通过线性函数 $f(x) = w^Tx$中的权重向量的某个范数来度量其复杂性, 例如$\lVert w \rVert^2$。 要保证权重向量比较小, 最常用方法是将其范数作为惩罚项加到最小化损失的问题中。 将原来的训练目标最小化训练标签上的预测损失, 调整为最小化预测损失和惩罚项之和。 现在,如果我们的权重向量增长的太大, 我们的学习算法可能会更集中于最小化权重范数$\lVert w \rVert^2$。 这正是我们想要的。我们的损失由下式给出:

\[L(w, b) = \frac{1}{n} \sum_{i=1}^{n}\frac{1}{2}(w^Tx^{(i)} + b - y^{(i)})^2\]

回想一下,$x^{(i)}$是样本的特征, $y^{(i)}$是样本的标签, $(w, b)$是权重和偏置参数。 为了惩罚权重向量的大小, 我们必须以某种方式在损失函数中添加$\lVert w \rVert^2$, 但是模型应该如何平衡这个新的额外惩罚的损失? 实际上,我们通过正则化常数$\lambda$来描述这种权衡, 这是一个非负超参数,我们使用验证数据拟合:

\[L(w, b) + \frac{\lambda}{2} \lVert w \rVert^2\]

对于$\lambda = 0$,我们恢复了原来的损失函数。 对于$\lambda > 0$,我们限制的大小。 这里我们仍然除以2:当我们取一个二次函数的导数时, 2和1/2会抵消,以确保更新表达式看起来既漂亮又简单。 为什么在这里我们使用平方范数而不是标准范数(即欧几里得距离)? 我们这样做是为了便于计算。 通过平方范数,我们去掉平方根,留下权重向量每个分量的平方和。 这使得惩罚的导数很容易计算:导数的和等于和的导数。

此外,为什么我们首先使用$L_2$范数,而不是$L_1$范数。 事实上,这个选择在整个统计领域中都是有效的和受欢迎的。 $L_2$正则化线性模型构成经典的岭回归(ridge regression)算法, $L_1$正则化线性回归是统计学中类似的基本模型, 通常被称为套索回归(lasso regression)。 使用$L_2$范数的一个原因是它对权重向量的大分量施加了巨大的惩罚。 这使得我们的学习算法偏向于在大量特征上均匀分布权重的模型。 在实践中,这可能使它们对单个变量中的观测误差更为稳定。 相比之下,$L_1$惩罚会导致模型将权重集中在一小部分特征上, 而将其他权重清除为零。 这称为特征选择(feature selection),这可能是其他场景下需要的。

$L_2$正则化回归的小批量随机梯度下降更新如下式:

\[w \leftarrow (1 - \eta\lambda)w - \frac{\eta}{|\beta|}\sum_{i\in\beta}x^{(i)}(w^Tx^{(i)} + b -y^{(i)})\]

我们根据估计值与观测值之间的差异来更新w。 然而,我们同时也在试图将w的大小缩小到零。 这就是为什么这种方法有时被称为权重衰减。 我们仅考虑惩罚项,优化算法在训练的每一步衰减权重。 与特征选择相比,权重衰减为我们提供了一种连续的机制来调整函数的复杂度。 较小的$\lambda $值对应较少约束的w, 而较大的$\lambda $值对w的约束更大。

高维线性回归

首先,我们像以前一样生成一些数据,生成公式如下:

\[y = 0.05 + \sum_{i=1}^d0.01x_i+\epsilon where \epsilon \sim \aleph(0, 0.01^2)\]

我们选择标签是关于输入的线性函数。 标签同时被均值为0,标准差为0.01高斯噪声破坏。 为了使过拟合的效果更加明显,我们可以将问题的维数增加到d=200, 并使用一个只包含20个样本的小训练集。

%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

从零开始实现

面我们将从头开始实现权重衰减,只需将$L_2$的平方惩罚添加到原始目标函数中。

初始化模型参数

我们将定义一个函数来随机初始化模型参数。

def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]

定义$L_2$范数惩罚

实现这一惩罚最方便的方法是对所有项求平方后并将它们求和。

def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2

定义训练代码实现

下面的代码将模型拟合训练数据集,并在测试数据集上进行评估。 线性网络和平方损失没有变化, 所以我们通过d2l.linregd2l.squared_loss导入它们。 唯一的变化是损失现在包括了惩罚项。

def train(lambd):
    w, b = init_params()
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())

忽略正则化直接训练

我们现在用lambd = 0禁用权重衰减后运行这个代码。 注意,这里训练误差有了减少,但测试误差没有减少, 这意味着出现了严重的过拟合。

train(lambd=0)
w的L2范数是 12.963241577148438

使用权重衰减

下面,我们使用权重衰减来运行代码。 注意,在这里训练误差增大,但测试误差减小。 这正是我们期望从正则化中得到的效果。

train(lambd=3)
w的L2范数是 0.3556520938873291

简洁实现

由于权重衰减在神经网络优化中很常用, 深度学习框架为了便于我们使用权重衰减, 将权重衰减集成到优化算法中,以便与任何损失函数结合使用。 此外,这种集成还有计算上的好处, 允许在不增加任何额外的计算开销的情况下向算法中添加权重衰减。 由于更新的权重衰减部分仅依赖于每个参数的当前值, 因此优化器必须至少接触每个参数一次。

在下面的代码中,我们在实例化优化器时直接通过weight_decay指定weight decay超参数。 默认情况下,PyTorch同时衰减权重和偏移。 这里我们只为权重设置了weight_decay,所以偏置参数不会衰减。

def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))
    for param in net.parameters():
        param.data.normal_()
    loss = nn.MSELoss(reduction='none')
    num_epochs, lr = 100, 0.003
    # 偏置参数没有衰减
    trainer = torch.optim.SGD([
        {"params":net[0].weight,'weight_decay': wd},
        {"params":net[0].bias}], lr=lr)
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.mean().backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())

train_concise(0)
w的L2范数 13.727912902832031

train_concise(3)
w的L2范数 0.3890590965747833